张立祥

alt text 

博士后 工学博士
工业互联网与智能系统平台,
北京航空航天大学,杭州创新研究院
杭州市滨江区长河街道炬航弄99号
Office: 3号楼214
E-mail: Z18811373128@163.com zhanglx@buaa.edu.cn

个人信息

  2025.07-至今,北京航空航天大学杭州创新研究院 博士后,合作导师:高庆 教授;

  2025.07-至今,北京航空航天大学 联合培养博士后,合作导师:王薇 教授;

  2019.09-2025.06,北京理工大学机械与车辆学院博士研究生,导师:阎艳 教授、胡耀光 教授;

  2023.12-2024.11,The University of Auckland 联合培养博士研究生,导师:Xun Xu 教授;

  2015.09-2019.06,北京理工大学机械与车辆学院学士;

  发表SCI/EI论文 17 篇(其中:第一作者 10 篇,TOP期刊 6 篇),授权发明专利2项,受理发明专利4项;

  累计被引300余次,H-index=10(谷歌学术)

科研方向

  • 资源调度

  • 任务分配

  • 强化学习

  • 多智能体

  • 智能制造

主要获奖

  • 2024年度中国科协青年人才托举工程博士生专项计划(机械工程学会)

  • 教育部研究生国家奖学金

  • 北京理工大学优秀毕业生、研究生特等学业奖学金、优秀研究生标兵、优秀研究生

  • 2022年中国大学生机械工程创新创意大赛智能制造赛研究生组三等奖

学术任职

  • IEEE Transactions on Cybernetics/Journal of Manufacturing Systems/Journal of Intelligent Manufacturing/Information Sciences/Computers & Operations Research/IEEE Transactions on Automation Science and Engineering/IEEE Transactions on Network Science and Engineering/Engineering Applications of Artificial Intelligence/Expert Systems with Applications等顶级期刊审稿人

  • Journal of Supercomputing/Journal of Bionic Engineering/Cluster Computing/Scientific Reports/Frontiers of Engineering Management等重要期刊审稿人

科研项目

  • 核心骨干,任务二:《制造系统多机协同作业与运维决策联合优化方法研究》,国家自然科学基金-面上项目,2022-2025

  • 核心骨干,任务三:《柔性车间资源协同配送与 AGV 路径优化技术研究》,国家重点研发计划-青年科学家项目,2022-2024

  • 负责人,《模型与数据混合驱动的生产调度优化方法研究》,北京理工大学大学2022年度研究生科研水平和创新能力提升专项计划,已结题

代表论文

First author publication list

  1. Lixiang Zhang, Yan Yan, Chen Yang, Yaoguang Hu. Dynamic Flexible Job-Shop Scheduling by Multi-Agent Reinforcement Learning with Reward-shaping. Advanced Engineering Informatics, 2024, 62: 102872. (中科院1区TOP, IF=8.0,2024-10-18)[Link]

  2. Lixiang Zhang, Yan Yan,Yaoguang Hu. Dynamic flexible scheduling with transportation constraints by multi-agent reinforcement learning. Engineering Applications of Artificial Intelligence, 2024, 134: 108699. (中科院2区TOP, IF=8.0,2024-05-30)[Link]

  3. Lixiang Zhang, Chen Yang, Yan Yan, Ze Cai, Yaoguang Hu. Automated guided vehicle dispatching and routing integration via digital twin with deep reinforcement learning. Journal of Manufacturing Systems, 2024, 72: 492-503. (中科院1区TOP, IF=12.1,2024-01-06)[Link]

  4. Lixiang Zhang, Ze Cai, Yan Yan, Chen Yang, Yaoguang Hu. Multi-agent policy learning-based path planning for autonomous mobile robots. Engineering Applications of Artificial Intelligence, 2023, 129: 107631. (中科院2区TOP, IF=8.0,2023-12-04)[Link]

  5. Lixiang Zhang, Yan Yan, Yaoguang Hu. Deep reinforcement learning for dynamic scheduling of energy-efficient automated guided vehicles. Journal of Intelligent Manufacturing, 2023, 35: 3875-3888. (中科院1区TOP, IF=8.3,2023-10-12)[Link]

  6. Lixiang Zhang, Chen Yang, Yan Yan, Yaoguang Hu. Distributed real-time scheduling in cloud manufacturing by deep reinforcement learning. IEEE Transactions on Industrial Informatics, 2022, 18(12): 8999-9007. (中科院1区TOP, IF=11.648,2022-05-27)[Link]

  7. Lixiang Zhang, Yan Yan, Yaoguang Hu. Integrated scheduling of flexible job shop and energy-efficient automated guided vehicles[C]. 8th IEEE International Conference on Advanced Robotics and Mechatronics, July 8-10, Sanya, China, 2023. [Link]

  8. Lixiang Zhang, Yan Yan, Yaoguang Hu, Weibo Ren.Reinforcement learning and digital twin-based real-time scheduling method in intelligent manufacturing systems[C]. IFAC-PapersOnLine,2022, 55(10): 359-364.[Link]

  9. Lixiang Zhang, Yan Yan, Yaoguang Hu, Weibo Ren. A dynamic scheduling method for self-organized AGVs in production logistics systems[J]. Procedia CIRP, 2021, 104(1): 381-386.[Link]

  10. Lixiang Zhang, Yaoguang Hu, Yu Guan. Research on hybrid-load AGV dispatching problem for mixed-model automobile assembly line[J]. Procedia CIRP, 2019, 81: 1059-1064.[Link]

Relavant publication list

  1. Jingfei Wang, Yan Yan, Yaoguang Hu, Xiaonan Yang, Lixiang Zhang.A transfer reinforcement learning and digital-twin based task allocation method for human-robot collaboration assembly[J]. Engineering Applications of Artificial Intelligence, 2025.03.15,(144):110064.[Link]

  2. Yinqian Li, Jingqian Wen, Yanzi Zhang, Lixiang Zhang.Identification of Key Node Sets in Tunneling Boring Machine Cutterhead Supply Chain Network Based on Deep Reinforcement Learning[C]. Proceedings of Industrial Engineering and Management, Lecture Notes in Mechanical Engineering, 2024.05.03,737-748.[Link]

  3. Zhenyu Hou, Lixiang Zhang, Yiheng Wang, and Yaoguan Hu.Deep Reinforcement Learning for Dynamic Flexible Job-Shop Scheduling with Automated Guided Vehicles[C]. Proceedings of Industrial Engineering and Management, Lecture Notes in Mechanical Engineering, 2024.05.03,89-99.[Link]

  4. Yiheng Wang, Yaoguang Hu, Jian Shi, Yongchao Zhu, Tao Zhou, Lixiang Zhang.Prediction Method of TBM Key Tunneling Parameters Based on Real-Time Operation Data[C]. 18th IEEE Conference on Industrial Electronics and Applications, August 18-22, 2023, Ningbo, China.[Link]

  5. 蔡泽,胡耀光,闻敬谦,张立祥.复杂动态环境下基于深度强化学习的 AGV避障方法[J]. 计算机集成制造系统, 2023,29(1):236-245.(学术精要2023年5-6月高被引)[Link]

  6. Weibo Ren, Xiaonan Yang, Yan Yan, Yaoguang Hu, Lixiang. Zhang. A digital twin-based frame work for task planning and robot programming in HRC[J]. Procedia CIRP, 2021, 104(1): 370-375.[Link]

  7. Sheng Qu, Yaoguang Hu, Lixiang. Zhang. An improved optimization method for materials distribution based on spatiotemporal clustering in automobile assembly lines[J]. Procedia CIRP, 2021, 97(1): 241-246.[Link]

发明专利

  1. 胡耀光,王一衡,张立祥,侯振宇,基于深度强化学习的AGV全局路径规划方法. 发明专利(已受理), 2023113029613, 2023.10.10.

  2. 胡耀光,侯振宇,张立祥,蔡泽,王一衡,基于深度强化学习的柔性多资源车间动态调度方法. 发明专利(已受理), 2023107031391, 2023.06.14.

  3. 张立祥,胡耀光,蔡泽,基于深度强化学习的自动导引车任务分配与路径规划方法. 发明专利(已受理), 2023111443125, 2023.04.06/2023.09.06.

  4. 胡耀光,侯振宇,瞿升,张立祥,蔡泽,王一衡. 一种基于混合遗传算法的动态柔性作业车间调度方法. 发明专利(已受理), 202211383410.X, 2022.11.07.

  5. 胡耀光,张立祥. 一种基于自组织自动导引车的柔性物流配送任务分配方法. 发明专利(已授权), ZL2020114015210X, 2022.07.26.

  6. 胡耀光,张立祥, 汪韵承,甘昕. 一种草莓采摘包装一体机. 发明专利(已授权), ZL201910278924.0, 2020.08.07.